Posts filed under ‘DNA’

Using Y-chromosome DNA

DNA testing does not provide names and so is not a substitute for more traditional family history research techniques. However a genealogist can use DNA testing as another tool to answer some family history questions in the absence of other documents.

Some questions that might be answered by a Y-chromosome (Y-DNA) test include:

  • Another man with the same surname lived near my ancestor. Were they related?
  • I think my female ancestor had a lover (or a second husband). Can I determine which man fathered her son?
  • My grandfather was adopted. I have a theory about who might be his father, can I prove it?
  • Can I prove that he and his brother are sons of the same man?

Father-to-son inheritance

Y-chromosome DNA (or Y-DNA) is a particular type of genetic material that is passed largely unchanged between a father and his son. As such, comparing the Y-DNA between two men can answer questions about whether they shared ancestors on the all-male line.

A female like myself who wants to answer the same sorts of questions needs to find a willing male close relative to be tested. I have ordered Y-DNA tests for my father, his mother’s nephew and also my mother’s brother in order to examine my nearest male lines.

In theory Y-DNA follows the path of surname inheritance and so finding a close Y-DNA match with another male who has the same surname is a good indicator that those men share an ancestor.

There are many reasons why a surname might not have been inherited along with Y-DNA. Geneticists refer to these as ‘non-paternity events’, when the father is either unknown or not the person commonly believed. A Y-DNA test could confirm a theory about paternity even when the possible father and son have different surnames.

To look for relationships between men long dead I need to find a living male descendant (down all-male lines) from each of them.

Sometimes that means stepping sideways – for example, researching a brother’s line if some man in the line had no male descendants. In other words, it is necessary to combine the use of more traditional family history research techniques with the new information offered by DNA.

A male with no clue about their father could take a Y-DNA test to learn which surnames occur most frequently amongst their genetic relatives and use these names as possible clues. (Alternatively a different DNA test – an autosomal test – might locate a cousin and that might help identify the father.)

I have also had serendipitous discoveries, when someone who tested with the same company was identified as a Y-DNA match with one of my family and we were able to identify the shared ancestor. Thus I have discovered previously unknown cousins, allowing an exchange of information about family history.

How does it work?

Every cell in your body has 23 pairs of chromosomes, inherited from your parents. The 23rd pair are the sex chromosomes – males have an X- and a Y-chromosome while females have two X-chromosomes. Note that only males have a Y-chromosome.

In each generation the Y- chromosome (or Y-DNA) of the father is copied (largely unchanged) in order to be passed on to his sons. However occasionally cells make a copying error.

Sometimes the number of repeats of a group of DNA ‘letters’ (called a short tandem repeat or STR) is increased or decreased.

The other mutation occurs only very rarely, when a single DNA ‘letter’ is miscopied (rather like a typo) – this is called a single nucleotide polymorphism (or SNP, pronounced ‘snip’). As both these changes are then transferred to future generations, the Y-DNA becomes rather like an audit trail, recording inheritance on the direct paternal line.

These mutations are illustrated in the diagram below. In the example Man 1 is the father of Man 2. When the Y-DNA of Man 1 is being copied, a SNP occurs when a ‘T’ is accidentally miscopied as an ‘A’. This change is inherited by Man 2 who then passes it on to his descendants.

Man 1 also has a segment of DNA with a short tandem repeat (STR) where the ‘letters’ CTA are repeated 5 times. We say that Man 1 has a repeat count (or allele) of 5 at that point. When that repeating section was copied for passing to Man 2, the number of repeats was increased – so 5 repeats became 6 repeats. By the time that DNA was re-copied and passed to their descendant Man 3, those 6 repeats have mutated to become 7 repeats. Note that Man 3 also continues to carry the ‘A’ variation of the SNP inherited by Man 2.

A genealogical Y-DNA test reports on certain STRs on the Y-chromosome. Rather than checking the whole chromosome, a male can order a Y-DNA test of certain useful sections of DNA (or markers) – currently available tests examine between 12 and 111 markers. When the repeat counts at those markers are compared against those of another male, a close match indicates that the two men share an ancestor on their all-male or patrilineal line. Depending on how closely they match, an estimate can be made about how many generations earlier their most recent common ancestor (or MRCA) probably lived.

Genealogists should test at least 37 markers. Anything less and it could be that an indicated shared ancestor lived many hundreds or even thousands of years ago.

Genetic genealogy tests also examine the SNPs (‘typos’) on the Y-chromosome. Such SNPs indicate the haplogroup – or where the male tested fits into the broad family tree of all men.

Which company to use?

The US company Family Tree DNA is the main company offering specific STR marker testing of the Y-chromosome with the required level of accuracy required by genealogists as well as having a large database of others’ Y-DNA results for comparison.  This company offers tests of between 37 and 111 markers as well as tools to interpret the results. For under US$170 (at the time of writing) it is possible for males to test their Y-DNA with sufficient accuracy to determine whether two men are likely to share a common ancestor ‘within a genealogical timeframe’ and also receive an estimate about how many generations ago that shared ancestor lived.

You can save money by ordering the Y-DNA test through a surname-specific project. Projects are managed by knowledgeable volunteers who analyse the similar DNA of large groups of people in order to draw further conclusions. By looking at the DNA of enough people with the same surname, it may be possible to identify when a particular mutation occurred. For example you may learn that ‘all those with this particular mutation descend from one brother but those without that mutation descend from the other brother’.

Many projects focus on a common surname but there are also geographic and ethnic heritage projects. Joining projects is free and you can usually join any that might be of interest – such as for other surnames that occur frequently among your DNA matches! Once you discover your Y-DNA haplogroup, I recommend you also join the relevant haplogroup project – those matches share Y-DNA heritage, whether or not they share surnames.

Family Tree DNA often has sales when significantly discounted prices are available. (The company’s Facebook page is one way to learn about such sales.)

Websites
Family Tree DNA
Projects on Family Tree DNA 
Webinars on Family Tree DNA
Family Tree DNA on Facebook
Ysearch   (for those who have tested with another company and want to compare their results against the Family Tree DNA database)

18 June, 2015 at 10:37 am Leave a comment

Introduction to using DNA with your family history research

Traditional family history research involves looking for documents that name an ancestor – and hoping that everybody told the truth! By contrast, genetic tools that are now available to genealogists tell the truth but do not name ancestors – however they can be used to find relatives and to check the accuracy of our constructed family trees.

Why use DNA testing?

Birth certificate without father's name

Birth certificate without father’s name

I have an ancestor who was adopted. When I eventually located his original birth certificate, no father was named. I developed a plausible theory about who his father might have been, but I could not find any record to prove or disprove my idea.

In another case my ancestor, John Etherington, a builder, sits at the top of one of my ancestral lines but I cannot find any documentary evidence that he was related to the John Etherington, also a builder, who lived two streets away. Another ancestor, Samuel Etherington, was reputed to also be the Samuel Holmes who fathered another family. To solve puzzles such as these I needed a different set of genealogical tools.

What is DNA testing?

Genetic genealogy testing is all about comparing our DNA with others. Closer relatives share more DNA in common with us than more distant relatives. Genetic genealogy tests examine the areas of DNA where we differ – and predict approximately how closely we are related.

Sometimes we have a particular theory to check and we know in advance the two individuals we wish to compare. At other times genealogists are ‘fishing’ in the DNA ‘nets’, hoping to find unexpected genetic matches who might share an ancestor with us and who might then have information about unknown family branches. In the latter case there are benefits in comparing with as many people as possible. One way to do this is choosing a company with a large database of other people already tested.

DNA testing companies

Currently the main options for genealogists looking for living genetic relatives are the three US companies Family Tree DNA, 23andMe and AncestryDNA (a branch of Ancestry.com).

  • Family Tree DNA is the company chosen by most genealogists – and these tend to respond to family history enquiries. Moreover this company’s website has useful tools available for comparing DNA as well as recorded webinars freely available.
  • 23andMe offers genetic health predisposition reports as well as ancestry information. Many of their customers chose the company for those health reports and so are less interested in responding to genealogists. A dispute with the US Federal Drugs Administration (FDA) currently prevents 23andMe from providing health reports to new customers except in the United Kingdom and Canada.
  • AncestryDNA tests were released first to US consumers and so most of the people in their database are in the United States. Recently AncestryDNA began offering tests to Australians. AncestryDNA test results can be linked to Ancestry trees.

Ordering a test involves going to the company’s website, selecting a test and paying by credit card and then the kit will be posted to you. Family Tree DNA and AncestryDNA tests involve swabbing inside your cheek (with something like a toothbrush) – in the way we have seen on television crime shows. The 23andMe test involves filling a test tube with saliva. In either method customers then post their completed kits back to the company and some weeks later are advised by email when their results are available online. Customers log on to the company’s website with a userID and password to find their results and matching customers predicted to be genetic relatives.

Which test should I take?

DNA testing is advancing (as well as becoming cheaper!) and so is more available for checking theories about your family history and perhaps even breaking down brick walls you might currently face. This article introduces the options currently available that might be useful to family historians.

Test 1: Y-chromosome tests, for males to test DNA inherited from their father’s fathers

For under US$200 we can test whether two males are likely to share a common ancestor ‘within a genealogical timeframe’, and how many generations ago that shared ancestor probably lived.

This test is valid for any two men who might share a male ancestor – they do not need to have the same surname. When testing with a company that has a huge database of people already tested, I might find a match with some living descendant who shares with me a common ancestor. This is useful for all genealogists but perhaps especially for adoptees.

I have used this test to discern whether two families with the same surname were actually related to each other, in the absence of documentary proof. I have also used this test to check (and refute) a theory about who might have been the biological father of an adopted male. It was necessary to find a living male descendant (down an all-male line) from the adopted male and also to find a living male descendant (down an all-male line) from the hypothesised birth father, and then compare the DNA that each inherited from their father’s fathers.

Y-chromosome tests are only available to males, as only males have a Y-chromosome. Females like me need to ask a near male relative to be tested – a brother, father, or uncle. I have ordered tests for my father and also my mother’s brother in order to examine my nearest male lines. For Y-chromosome tests, I recommend using the company FamilyTreeDNA and testing at least 37 markers.

Test 2: Mitochondrial tests, for anyone to test DNA inherited from their mother’s mothers

Useful DNA tests are no longer limited to males. We all have a different type of DNA (called mitochondria) that we inherited from our mother’s mother’s mother. Previously mitochondrial DNA could only tell us about ancient ancestors and their migratory patterns, but now it is possible to obtain much more recent information. Family Tree DNA offers a full sequence test of all our mitochondria, allowing us to identify people who share an ancestor with us on our maternal line within about 100-400 years. That test is also currently available for under US$200.

Test 3: Autosomal tests, to test the DNA inherited half from each of our parents

We are not restricted to testing only the DNA of our father’s fathers or our mother’s mothers. It is also possible to test our remaining DNA, inherited equally from both of our parents – this DNA is called ‘autosomal’. These tests compare the DNA of our ancestors regardless of gender, because we inherit half our autosomal DNA from each of our parents (and via them, from their ancestors). However as we inherit one quarter of our DNA from each of our grandparents (and so one eighth from each of our great grandparents) eventually the inherited material from any particular ancestor becomes so small as to be difficult to identify.

Consequently, when comparing this autosomal DNA with someone else, our best conclusions are when the shared ancestor lived no more than about five generations ago.

Commercial autosomal tests also report on our likely population origins or admixture, for example, ‘60% British, 20% Scandinavian and 20% Jewish’. The sample databases used for comparison are very small and currently most of these predictions are considered unreliable.

Family Tree DNA calls their autosomal test ‘Family Finder’, while 23andMe calls a similar test ‘DNA Relatives’. Both tests cost under US$100 – plus postage. (23andMe’s postage and handling charges to Australia  adds another three quarters to the price of their kit!) The AncestryDNA test costs Australians under US$150 (plus postage) but if you do not have an Ancestry.com subscription there is an annual cost for accessing your results.

For any genetic relatives identified in their autosomal tests, Family Tree DNA and 23andMe also report on shared segments of the X-chromosome. Females have two X-chromosomes (inherited one from each parent) while males have one (inherited from their mother). When trying to work out which ancestral branch might have passed down the X-DNA we share with some match in the database, genealogists can look at pedigree charts and eliminate any father-to-son branches, as fathers do not pass any X-chromosomes to their sons.

Use the tests in conjunction

The tests can also be used in conjunction. The autosomal ‘Family Finder’ test through Family Tree DNA identifies matches with my DNA and calculates a likely relationship.

One of my matches (described as a possible 3rd to 5th cousin) seemed to have very similar Y-chromosome (father’s father’s) DNA to my mother’s brother. I made contact and by swapping names of grandparents and their parents we soon identified that he was the son of a 3rd cousin to me (and so indeed within the range of 3rd to 5th cousins).

DNA cousins tested

DNA cousins tested

Autosomal testing can be used to check your constructed family tree.

Comparing the autosomal DNA of the three female cousins (Fay, Ann and Maureen) at the bottom of this diagram confirmed my constructed family tree of their relationships back to their shared ancestors.

 

(Spouses omitted after the first generation to simplify the diagram.)

 

 

 

Conclusion

It is not necessary to understand how a car works in order to drive it, but it is necessary to know the functions of driving. In the same way it is unnecessary to understand much about the science of DNA – but it is necessary to understand what sorts of questions can be answered by the different DNA tests so you can use them as tools to aid your family history research.

The most recent DNA tests available to genealogists offer useful information which can supplement traditional genealogical methods. Family trees are still needed to identify ancestors and draw conclusions about relationships. DNA tests can supplement this genealogical research, filling in gaps in the paper trails. With such tools we can test our conclusions and assumptions in constructed family trees by confirming or disproving reputed relationships. As more people are tested and databases grow, commercial DNA tests are even more likely to help us find relatives that we might not have found by traditional methods.

18 June, 2015 at 9:54 am Leave a comment

DNA tools for genealogists

DNA technology is advancing so rapidly that it is difficult to keep abreast of the advances and possibilities. Moreover rapidly falling prices make genetic testing more affordable and so more accessible. Here are some current options:

Test 1: Y-chromosome tests, for males to test DNA inherited from their father’s fathers

It is now possible for under US$200 for males to test the DNA they have inherited from their father’s father’s fathers, with sufficient accuracy to determine whether two men likely share a common ancestor ‘within a genealogical timeframe’ and how many generations ago that common ancestor probably lived.

I have used this test to discern whether two families with the same surname were actually related to each other, in situations where I have not yet found documentary proof. I have also used this particular DNA test to check (and finally refute) a theory about who might have been the biological father of an adopted male. It was necessary to find a living male descendant (down an all-male line) from the adopted male and also to find a living male descendant (down an all-male line) from the hypothesised  birth father, and then compare the DNA that each inherited from their father’s fathers.

DNA is not related to surnames and so I am not restricted to testing two men with the same surname – the test is valid for any two men who might share a common male ancestor. However when I order this test, if I choose to use a commercial testing company like Family Tree DNA – which has a huge (and growing) database – I might find in their database a match with some living descendant who shares a common ancestor that I did not know about. This is especially useful for adoptees.

The above DNA test is only available to males (as only males have a Y-chromosome). Females like me need to ask a near male relative to be tested. I have asked my father and also my mother’s brother to be tested – this opens up for examination my nearest male lines.

Test 2: Mitochondrial tests, for anyone to test DNA inherited from their mother’s mothers

Useful DNA tests are no longer limited to males. We all have a different type of DNA (called mitochondria) that we inherit from our mother’s mother’s mothers. Mitochondria mutates so slowly that formerly the only conclusions we could draw from our maternal line was about ancient ancestors and their migratory patterns.

However that is no longer true. The company Family Tree DNA offers full sequence tests of all our mitochondria (DNA that is inherited from our mothers) that allow us to identify people who share an ancestor through our mother’s mother’s mothers, within about 200 years. [Thank you Bill Hurst for pointing out that while 23andMe also tests the ‘coding region’ of our mitochondria,  they do not test or give results for all 16,571 locations, so theirs is not in fact a full sequence test.]

When the above matrilineal full sequence tests first became available, they cost close to $1,000. That price has dropped now to under US$300 (sometimes under $200).

Test 3: Autosomal tests, to test the DNA inherited half from each of our parents

We are not restricted to testing only the DNA of our father’s fathers or our mother’s mothers. Since 2010 it is possible to test the remaining nuclear DNA (that is, not the sex chromosomes). This DNA is called autosomal. Family Tree DNA calls their autosomal test Family Finder, while 23andMe calls a similar test Relative Finder. (Again these tests are under US$300 and sometimes under $200.)

These particular tests can check the DNA of our ancestors regardless of gender, because we inherit about half our autosomal DNA from each of our parents (and via them, from their ancestors) and this DNA can also be compared with the DNA of others. However as we inherit about one quarter of our DNA from each of our grandparents (and so about one eighth from each of our great grandparents) – eventually the inherited material from one particular ancestor becomes so small as to be difficult to identify definitively. Consequently, when comparing this autosomal DNA with someone else, our best conclusions are when the common ancestor lived no more than about 6 generations ago.

Use the tests in conjunction

While the above  tests examine separate DNA, the tests can be used in conjunction. When looking at the summary of DNA results for people that 23andMe identified as likely to be my 3rd to 5th cousins (identified via the Relative Finder – or autosomal test), I noticed that one of the matches also seemed to have very similar Y-chromosome (father’s fathers) DNA to my mother’s brother. I sent an email and by swapping names of grandparents and their parents, we soon identified that this person was the son of a 3rd cousin to me (and so indeed within the range of 3rd to 5th cousins).

It is not necessary to understand how a car works in order to drive it, but it is necessary to know the functions of driving. In the same way it is unnecessary to understand much about the science of DNA in order to use it as a tool – but it is necessary to understand what sorts of questions can be answered by the different DNA tests so you know how to apply them as tools to aid your family history research.

This field is changing quickly

Because genetic tests available to the public are changing frequently (and certainly the prices are) readers need to beware of relying on conclusions written years ago or by someone who has not ‘kept up’ with tests currently available. This blog post is partly in response to an article I read this week entitled ‘The DNA dilemma’ – I do not agree with many of the conclusions in that piece.

It is no longer true to say that the only available information to be derived from maternal DNA (or mitochondria) is about ancient migrations of peoples – recent relatives can now be found by a full sequencing of the mitochondria (test available from Family Tree DNA for under $300).

It is no longer true that autosomal DNA can only make generalised indicators of race origins. (Autosomal DNA is sometimes referred to as ‘nuclear DNA’ but that is incorrect because the sex chromosomes are also inside the cell nucleus and the autosomes are the other pairs of chromosomes that are not the sex chromosomes.) Nor is it necessary to ‘test each generation in turn’. Autosomal DNA can identify that two people shared common ancestors within 6 generations (and possibly beyond, but it is less accurate beyond 6 generations). Many genealogists will not know all of their ancestors back even 6 generations, and so this DNA test can predict likely distant cousins who may not have been found by a paper trail.

There are differences between the DNA tests used in forensic law enforcement compared to commercial tests. Without going into too much scientific detail, legal forensics examine repeating groups of DNA at certain points on the autosomes whereas commercial autosomal tests examine the autosomal SNPs (something like ‘typo’ mutations). The tests are entirely different. Be wary about confusing the markers referred to in tests of the Y-chromosome (the DNA inherited father-to-son) – which are entirely different to the markers of autosomal DNA examined by forensic law enforcement agents.

Some people have suggested that male DNA studies are only relevant between males who share surnames. That is not true. There are many examples where family trees show a son with a different surname to his father – whether the name was changed by deed poll, by adoption, by remarriage of the mother – or for many other reasons. It is not the same surname that defines two people as father and son. Likewise DNA tests do not take surnames into account, so the test result is just as accurate whether two men share a surname or not.

In my opinion, the most recent DNA tests available to genealogists offer precise information which can supplement traditional genealogical methods. Family trees are still needed to identify ancestors and draw conclusions, however DNA tests can supplement other genealogical research, filling in gaps left by paper trails. With such tools we can test our conclusions and assumptions in constructed family trees as DNA can confirm or disprove reputed relationships. As databases grow, commercial DNA tests are more likely to help us find relatives that we might not have found by ‘traditional methods’.

5 June, 2012 at 11:22 pm 11 comments

DNA journey

I started down the DNA learning path several years ago. My Dad’s father was adopted, & when I eventually found his birth certificate it contained no information about his father. An unusual middle name and circumstantial evidence suggested someone, but with no documentary evidence, DNA seemed a way to test my theory.

I found a grandson of this possible ancestor – son of a son, so a good candidate for y-chromosome DNA comparison with my father. I asked – if I paid for it, would he be willing to have his DNA tested to compare with my father’s DNA? He said yes, but unfortunately the test proved that he and my father were not related. (DNA is often better at disproving rather than proving relationships.)

I used the company Family Tree DNA, which has the largest database for testing and comparison, and now that I am registered, I am advised when others match my Dad’s DNA. I hope that one day I will find someone with the right DNA,who had an ancestor in the right place and at the right time.

Some time later, I had the opportunity to speak to Megan Smolenyak about my problem & confirm my method. I asked Megan for her advice about which company should I use to test my Mum’s DNA.

Females don’t have y-chromosomes so cannot have the y-DNA tests done. However humans have other DNA outside the cell nucleus, called mitochondrial DNA (mtDNA). Mothers pass mtDNA to all their children, but only their daughters pass it on. I wanted my Mum’s DNA to be tested now and also stored for the future, for as-yet-undeveloped tests. Forensic scientists use mitochondrial DNA now, but for genealogists mtDNA is mostly only used for deep ancestry testing, not for finding ‘recent’ ancestors (those in a genealogical timeframe).

Megan suggested that I have my mother’s DNA tested with the company 23andMe, as they were developing new tests and could offer more information about female ancestors. 23andMe tests give information about genetic health issues, in addition to genealogical ancestry matching – so I took that advice.

These 2 companies that I had used (23andMe & FamilyTreeDNA) offer very different information in their test results. Results from the FamilyTreeDNA tests are tables of numbers, indicating the DNA at specific genetic marker points. There is also a YSearch database for comparing results, and even people who have had their DNA tested with other companies can search this freely – you manually enter the numbers (alleles) at various marker locations and see if the results match anyone in the YSearch database.

The results from 23andMe gave information about genetic health risks and tendencies and general DNA groupings – it required a bit more delving to actually find the numbers that correspond to the (mitochondrial) DNA markers.

Around a year ago, both these companies announced new tests involving autosomal DNA. 23andMe call this ‘Relative Finder’ – FamilyTreeDNA call it ‘Family Finder’. Humans have 23 pairs of chromosomes in every cell nucleus – 22 pairs of autosomes and also another pair, the ‘sex chromosomes’ (XX for females, XY for males). The autosomes contain bits of DNA inherited from all your ancestors, not just from all-male or all-female lines. You share larger pieces of DNA in common with close relatives, and smaller bits of  autosomal DNA with relatives less closely related.

Both males and females have this autosomal DNA, so now you can find relationships with anyone sharing any common ancestor, not just the all-paternal or all-maternal lines. This new autosomal DNA test has thrown up some new possibilities and new candidates in the search for my father’s father’s heritage. (We already have found a close relative with interesting possibilities.)

However, back to the initial subject. The company 23andMe is offering a special price for the next few days, and some Facebook friends decided to take advantage of it. I agonised whether I should join them, given that I already have tested my father’s DNA as well as my mother’s mitochondrial DNA.

In terms of autosomal DNA, although the test is new, I suspect that the company FamilyTreeDNA is likely to have a bigger database for comparisons. (For me the main value of DNA tests is looking to match with others, and so larger databases are better.)

But 23andMe gives other information – about genetic related diseases – in addition to the study of ancestry. I have decided that both companies’ tests are of interest to me. So now I too have taken advantage of the current special price, and will get my own DNA tested.

Of course there are many other testing companies, and websites with information about DNA. I give talks about ‘DNA for Genealogists’ (my handout can be found on my website). The handout contains information about various testing companies and their information pages, as well as other sites with DNA tutorials, mailing lists and even a DNA Wiki.

For now though, I have joined the ranks of those waiting for a test tube to be posted to me, so I can take the next step in this DNA journey.

27 November, 2010 at 10:48 pm 2 comments


Discoveries and musings of a family history researcher and instructor - including tips and hints.

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other followers

Categories

Archives


%d bloggers like this: